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We consider the t ime-opt imal  control of a plant which is described by a sys- 
tem of linear fourth-order differential equations with constant coefficienu,on 
which certain comtraints are imposed ; there are two phase constraints. We de- 
scribe the properties of the optimal control and realize its synthesis. 

I .  S t a t s m e n ~  of  the ptoblera ( * ) .  The problem of controlling a plant de- 
scribed by the differential eauatiom 

dS/d t  = u,  d F / d t  = a.~F + au + a~5 

dO/dt  = 01, d ~ l / d t  ---- b4a~ -~- b..F ( i . i )  

with constant coefficients and with the constraints 

u 2 ~ u o  2, 5 2 ~ 6 o  2 , F 2 ~ F o "  (1.2) 

is a characteristic one in a number of  applications. The coefficients of system (1.1) are 

related by ktT1 k~ i ~ i 
a---- T - - ,  a i = - ~ - . 2 ,  a : = - - - - ~ ,  b - . = - ~ -  2 ,  b , =  Tz (1.3) 

The quantities u0, 60, F 0 are constant and positive, It is assumed that 

a : < 0 ,  b , < 0 ,  T 1 ~  T ~ 0 ,  k o ~ 0 ,  k ~ 0  

We need to find a measurable function u ° (t) (the optimal control) which with maximal  
rapidity takes the plant from the initial stare 5 ---- F ---- ~ - -  01 = 0 to the mrminal  
state 5 = F ---- ~ i  = 0, ~ ---- ~ a n d  ensures the fulfillment of constraints (1. 2). 

2. O p t i m a l i t y  c o n d i t i o n s ,  we investigate this problem by using the results 
in [1]. Let 6 ° (t), F ° (t), ~c (t), 01 ° (t), u ° (t) be the optimal solution. We write out 
the maximum principle, 

u ° (t) = u0 s ign (~1 ~ a~2) (2.1) 
d~l d*2 
dt - - - - -  a l * :  - -  25 ° d ~  dp~ dt ' '  dt = a..,~ + b .* ,  - -  2F  ° dt 

d¢~ = 0, de, 
dt - -  d r  = *a + b**4 (2.2) 

dg, [(~0 (t))2 - -  6021 -~ O, dl~tdt ~ 0 

am [(F o (t))"- Fo 2] = 0, d~2 dt - -  dt ~ 0 (2.3) 

We obtain an expression for the function , ;  ~- a ,~  from the solution of differential 
equations (2.2), 

*) The problem was posed by N. P. Dergunov. 
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~p~ (t) + a~p: (t) = (% + a~)~, + Q (t) 

(~1 + a~)V. A~e -b,t + A.e -a'~ + A~t -- A~ 

t 

O (t) = 2~* (t) W + 2aF~ (t) W ]  dt - -  (a~ aa.) × 

t 

7< 
~ 0 

,41. 
(a~.+.ab~)b~ C4, A~ = at÷aan C~ 

az~b~ " a2 

aib2 As = - -  ~ Cs, A~ = C, 

(2.4) 

where Cx, C,~, Cs, C4 are arbitrary comtants.  Using the relations for the coefficients 
of  thesy l tem of differential equations (1.1),  we obtain A 1 = O. 

3.  S t ~ u a t t t r Q  o f  t h s  o p t i m a l  i o l u t i o n s .  1". If  the opt imal  solution is 
such that the measures d~ti/dt = 0 (i = 1, 2), then it coincides with the t ime-op t i -  
mal  solution of the correspondin~ problem without phase constraints. From (2 .4)  it fol- 
lows that in this case the opt imal  control has two switchin~ and is a piecewise-constant  
t ime function. On the ( YlY~ )-plane,  where 

~ ~ ( l  1 ~ 1  

y~.----- 8, y,,---- F + %"7 
a,2. 

the phase trajectories of the system with u = -% u0 are determined by the expression 

r o,' ] <a.l) a..'--'~-,  u,o = C exp  " Yl 
L 4"  (a,, - -  a,) u, 

Here C is an arbi~ary constant. In Fig. 1 the dotted curves represent both types of phase 

trajectories. The limiting curves rI  1 and H e (F ig . l )  are determined by the dependen- 
cies (3 .1)  as Yl "*" ~ =o for 11. = -t- u0 , respectively.  The closed cm-ve corresponds 
to a typical  opt imal  trajectory. 

2". Let the opt imal  solution be such that at least one of  the measures d tt z / dr, 

t I I  

7" I I I  
I I I  

1 ' 

d~t.. / dt is not identically equal to zero. Let us 
study function (2. 4). By a lemma from [2] the func- 
tion (~i  "~- a$2)~ has not more than two zeros, 

" - . ~ -  ..,.~ ~ .-,. / F 
u..u,<" ~ - . -. ~ __ 

- p  --"~--____. . . . .  ju:-uo 

Fig. 1 Fig. 2 
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while its derivative has not more than one zero. The forms of  this function, of  the func-  
tion Q ( t ) ,  and of  ~x (t) -~- a~¢ (t) are shown in Fig.2.  We note that in Fig.2 wehave  
indicated and examined the case when the function ~ l  (t) + a~2 (t) is positive for 
t -~- 0 .  The discussion is analogous for the other case. 

We return to Fig. I .  In the coordinates Y,, Ys the phase constraints F = -~- F o  map 
into the straight lines 2_ F0 defined by the expreraion 

Yx = (Y~ - -  F0) a2 - -  a, n I 

while the phase constraints 8 ---- -4- 80 map into the corresponding straight lines : 60. 
The system can go onto the phase comtraints -~- F0,  -{-60, ( - -  ~'o, - -  60) (see Fig. I 
wherein the phase constraints are hatched) Only with a positive (negative) control. Since 
a ~ 0 and a I "{- aae ~ O, we see from exprettion (2 .4)  that neither the measure 
d~l  / dt nor the measure d u t / dt can have jumps at the instant of  going onto a phase 
comtraint ,  i . e .  at the instant of  going onto ~ i  (t) + a ~  (t) = O. Note also that when 
it is located on the phase boundary ~,(t)-~-a~;; ( t )=  0 the measure cannot have jumps 
at the instant of  leaving from the phase constraint. From all of  this it follows (this is 
shown in Fig. 2 for one case) that the departure from the constraint + F  0 or + 8 0 can 
be effected only at the instants when d (~x -;" a,.)~. / dt .< O. because otherwise the 
phase constraint is violated (departure from -- F0,  -- rio, when d (1~1 .dr. a~S)p.  / 
dt ~ 0). Thus, when (~z + a~t )  = (~x -~- a~s)g ~ 0 holds at the initial instant 
t ---- 0 the opt imal  trajectc¢ 7 can go onto the phase constraints + F0,  + 6 0 only 

once, and onto the constraints - -  F0,  - -  8 0 only once. 
N o t e  1 .Each  solution of  the differential equations from (1 .1)  satisfies the relat ion 

d 
Tx ~'~ (T2Ot" -- ~ -- MklS) + (T2~," -- O~ -- kok16) == 0 

Hence, taking into account  that ~),_ = F = 6 = 0 at the terminal  point, we obtain 

(Tt - -  Tx)Ox = T2koF -- Txkokt 6 (3.2) 

N o t e 2 .  Let us consider the portions of  the opt imal  trajectory, lying on the phase 
constraints. For I F~ (t) [ = F 0, for example,  for F ° (t) ~ F 0' from (1 .1)  we find that 
u ° (t)is a continuously differentiable function 

a,6 (tl) + a, Fo e..a,(t_t,)a-, (.3.3) u" (t)  = - -  a 

where 6 is the imtant  of  going onto the phase comtraint .  Here the coordinate 

and, increasing monotonically,  tends to 6 (o~) = -- atF 0 / a,. This follows from at /a  >0, 

(3 .1 ) , and  a,6 + a ,F  ----- k! (T2 - -  Tz) ~ x [ l  - -  e -s/T;u'] < 0. For I 6° (t) I = 6o, for e x a m -  
ple, ~° == + 6o, u ° (t) - -  0. The coordinate F ° (t), decreasing monotonically,  tends to 
F (=~o) == - -  at6oa~ 1 > 0. Thus, the opt imal  trajectory goes onto the phase constraints 
only in the following order : + F 0 ,  +6o,  --Fo, --ft,, although here it may not go onto 
some of them. 

4 ,  S y n t h e s i s  o f  t h e  o p t i m & l  o o n t t o l .  For forming the control synthesis 
we restrict ourselves to the case, most often encountered in practice, when the phase tra- 
jectory with u = ___+ us,  passing through the origin, intersects at first the phase con-  
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slzaint F = -4- F0. The other case possible, when at first the com~aint  8 = ,-+-80 is 
in~mected,  is analyzed analogously. 

Let m investigate she op¢imal solution with the control u ° (t) = ' - -  u0 on the initial 
segment. From a prop~ition following later we conclude Sh'at if she initial segment of 
she optimal t r a j e cm ~  terminatm within she phase consuainu, then she whole ~ajector]  
lies within she phase con.~rain~, in this case the ~/nshesi$ problem is she determination 
of the two switching imtan~ with she aid of she ctu~ent phase coccdinar~.s of she plant, 
Let us consider she case when she initial segment of the trajectory terminates on the 
phase constraint ~ = ~___ Fo. Here she synthesis l~oblem consists of determinlng the 
instant ~s of leaving born she phase comtraint (from she constraint F = ~ F0 or from 

~--- ~___ 50 following it) and. after this, of distinguishing the two possible terminal seg. 
ments of she optimal  t~ajectory : 

1) the terminal segment is wholly located within the phase comt~aints (Fig. 3 ; 
She trajecto~ prosing through the points 2, 1, 0) is of rye(l); 

2) the ~ rmtna l  segment goes onW She phase coastraint F ~ (t) ----- ~ F 0 (Fig. 3 ; 
She ~ra~ecu~y passing through She points 3, 8C, ~C, o) is of type (2). 

In case (1) she control syu~esis is effee-  
Yz} ~ , ~ % '  .x. //~" ted if ~ e  ir~tant t a and she instant t~ 

.. ~,(/ - she immnt of crossing over to she ~ra- 
"\'~,, / / " ~ , ~ ; .  ~..,_~" ject~'y segment wish u = -it-/-/'0, 

Fi N 3 

passing Shrough she origin (Fig. 3) - have 
been expressed in terms of the system's 
phase coordinates. The variation of she 
plant's phase stale on she terminal seg- 
ment is desczibed, wish due regard to 
(3. 2), by She following equations : 

d6 dO1 = a~01 + as8 
dt ~ IZ, dt 

hk~ 
d.O... = 01, a3 = (4.1) dt Ts 

5 " = -  9 6, O.,i  = __ a~. 8- "0 i (4.2) 
~ 2  a ~ . 

are described by she equation 
oe 

"0'1"--~, Uo = Ce- (4.3) 
where C is a parame~r .  

Let us exprea  She phase co~dlnate$ of the system at She inslant t 5 (we aulgn them 
the index (.5)) in terms of She coc{dlnates at lhe instant t a (she index (3)) of crculng 
over onto she terminal segment of she optimal trajec-tory. Using Eq. (4. 3) we obtain 

-~- ~ a, as / as \~1'J, 

= ÷ - ~ - :  In -T-7~-  ~ + i (4.5) 

For u = u 0 s h e  phase trajectories of this system in the coordinates 6" ,  O~1, where 
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Here and below the superscripts correspond to trajectories starting off with u = -~- u0, 
while the subscripts - to trajectories strating off with u ----- - -  u0. Having integrated 
Eqs. (4 .1 )  from the terminal  point 8 = F = 01 = 0,  0 = 0 k in reverse Order, res- 
pect / re ly ,  to t /~  point ~5 with u ---- ~___ u0, and from the point t 5 to ts with u = -~- 

U 0, we obtain O (s)= t [ a,8 (~) --- a~u, ] 
" ~  + - - , - + -  q~--~ - J [e -''<~> - - l l  + a2 [ a~ 

a'~¢~) to) -~- asUo + 0(~ (4.6) a~. 2a.,. a~ 2 

8(a) _ 8(s) 8(~) 
r ( a )  ~--_ T(5) ---__ 

0~5) = +-- a''~e-""~(s)4-a'u'°[ ' ' r c ' , a , ,  ~ a~. a, ;~t] 

, I'r(~> I ].r(~,+O~. 0(5) - -  a~uo [e_a,~(5) t ]  - 7 - a ~ u  o '2a.,. ~ ~ - -  a~ ~ ' 

Substituting (4. 4), (4 .5)  and (4. 2) into (4. 6), we obtain 

0 3 = 0±<~) (8(3), Ozcs~, 0~) 

Hence it follows that  the instant t s is determined from the condition that the function 

/, (8, 9,, O, O~) = O (t) -- be(s) (8 (t), O, (t), O~.) (4.7) 
equals zero. 

In case (2), besides the imtants is, t~, there is one more characterist ic in~ant  t4 
namely,  the instant of  going onto the phase comtraint F ---- ~ F o , which must be 
expressed in terms of  the cur~mt phase ccordinates. For motion under this comlzaint  the 
family of  phase t~ajectorles of  the system is described by the functions: 

in the ( 0 0 1  )-plane 

~) = -+- in Oz ~ ~ Fo b._, i 

in ~ ( 60, )-plane 

6 - - '  a, Fo = C (4.9) 
-- a, O,.-~--(b.,/b,)Fo 

Moving from the terminal  point to point t6,we obtain the functions 0 ~  ) (6(s)),O(6) (6(a)). 
Using the first one of  them, we determine 6(5) for F -- -7- F& with the aid of  (3. 2) ,  

T=koF - -  T,kok~O) - -  (T~ - -  T,) (}1 (b) (6(6)) - -  0 

From (4. 8), (4. 9) we find that  at the point t 4 

= --6TFo + -~--~-eo)-~/~ C~ ) (4.10) 

where the constants Co(5) (Ok), Co~ <5) (0~) are found from the condition that these 
phase trajectories pass through the point ~(s), ~z(5) 0(5), - -  F0.  

For motion in the open region, when u = c o n s t  ----- ~ u o, from system (1 .1)  we 
can obtain 
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b~ ) alb.,. d b,. F ~ a  .... 6 = 6 

which corresponds to 

~_ a ,~ (0~-b~0)  _+_ u? F - -  a-° 6 = ( . 'c~)-  "5-2~- (4.12) 
a l b 2  - -  a l  a t  

From the condition that the phase t~ajectol 7 (4.12) paues through the point 6(4), 01(a), 
0(4), -~  F ,  we find 

(6~): a~u, /O(4) = uo F -r- a.o 5(~)_~ (4.13) C ( ~ ) , = - 1 - ~  ~ - - b 4 ~  (4)) , ~ o T  a~ z 

With the aid of dependent T (3.1) we obtain the equation determining 3(4) 

- ~ F o +  a, 3(,)-- r- aa.2-~-a, (.7_r_ ' a2 ) -, Uo = C (3) o x o  ~ 6(~) (4 .14)  
a 2  a 2  2 " l~ 0 

? ) C(a) = (a) .¢. a, , a2 a uo exp . 3(3) 
Uo 

T 2 k o F  (3) - -  T ~ k j : / 6  (3) - -  (T2 - -  T , )  O~ a) = 0 

Thus. from (4.14), (4.10), (4.11) and (4.13) we obtain, respectively, 

6(') = 6(') (6o), O,(a)), 0(,) = 9~4) (6c8) e~(s) 9~) (4.15) 

~ ( 4 )  = ~ (~) (3 ( s ) ,  0~(3)), C(4) = C(~) (6(3), 01(3), 0,~) 

The crossing of the optimal phase t~ajector~ over to the terminal segment, i. e. the deter- 
mination of the instant ta in the optimal control ~/nthesis, takes place when the current 
s~/stem phase coordinates 3, X~. ~) satisfy the equation 

/~ (~, 0~, o,  0~) --  ~ ~ - -  ~, 

), O~ 6"- -r--- aUOa, 6 - -  C(~) (6(~), O~ 3 ) + ~ = 0 (4. i6)  

where C(~) ( . . . )  is determined from (4.14) and F is determined in terms of 0~, 3 
from (3.2).  

T h e  c o n t r o l  s y n t h e s i s  i~ c o n s t r u c t e d  in  t h e  f o l l o w i n g  m a n n e r .  
During the plant's motion we compute the above-defined (see (4. 7), (4.16))functions of 
the ctu~ent phase coordinates and of the required terminal ~ :  ] :  ( . . . ) ,  f~ ( . . . )  , and 
we verify the conditions F (t) ~- -~- F 0 ( - -  F0) and 8 (t) = "{-~o (--30)-  At first 
the plant's motion takes place along the initial trajecto U (Fig. 3) with u ° it) = 4 -  u0. 
The choice of this or the other starting point is determined by the rule ~ (t) O~ ~ 0, 
which is ~oved in the Appendix.At the instant that F (t) -~--~Fo ( - -F0)  the t~ajecto~ 
goes onto the phase constraint on F and the motion continues with u ° (t) determined 
in accordance with formula (3.3).  Here the coordinate I 5 (t) I increases monotonic.  
ally. At the instant that 3 (t) ~- -~ 6o (--6o)  the ~ajectcry goes onto the phase con- 
st~nint on 3 and the motion continues with u ° (t) ----- 0. Right away the t~ajec~m-y 
comes off the phase constraint on F since the coctdinam [ F [ decreases monotonically. 
The object realizes the motion described either completely or partially depending on 
when the it~tant t s of coming off the phase cons~aint$ occurs. This instant coincides 
with the imtant of fulfillment of one of the equalities 

f:  (5, ~ ,  ~ ,  ~ )  = 0, f~ (6, ~ ,  ~,  0~) = 0 
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In case the f irst equality is fulfilled the opt imal  trajectory has a terminal  segment of  

type 1. The plant 's motion from the instant ta takes place with u ° (t) = ~ u o up to 
the instant t 5 and f l  (~ (t), ~1 (t), ~ (t), ~a) ~_ 0. The instant t 5 is determined as 
the first lmtant  after t 8 that the function f l  ( . . . )  once again becomes nonzero. Begin- 
ning with t~, u ° (t) ---- -4- Uo and remains so until the end of  the process, determined 
by the equality 0 (t) ---- 0 k. 

In case the second equality is fulfilled the opt imal  trajectory has a terminal  segment  
of  type 2. The plan~'s motion from the instant t a continues with u ° (t) ---~ - ~  ~0 up 
to the instant t4 and f~ (~} (t), ~x ($), ~ (t), 0~) ~ 0. The instant t 4 is dete, mined 
from the condit ion F (t) ~ ~ F 0 (-~- F0) .  s tar t ing from the instant t 4 and up to 
instant t~ the motion takes place with u ° (t) determined in accordance with formula 
(3.3) .  The instant t 5 is determined by the condition f l  (6 (t), Ox (t), ~ (t), Ok) ~ 0. 
We note that up to this imtant  this function has not ctlanged sign from the beginning of  
the motion.  From instant t~ and up to the end of  the process the motion takes place 
wi th  u ° ( t )  = _____ u 0 .  

8.  A p p e n d i x .  Let us examine the differential equation 
d 
d-7" ('~1 -- b~O) == b.,.F 

obtained from (1.1) .  The function 
] (t) •ffi O~ (t) - -  b40 (t) := .~ b~F (t) dt 

0 

has 3 (0~ ffi= 0, Y (t~) =ffi Ok / T~. Let us determine the sign of  this functional (t = t~) 
on opt imal  trajectories lying wholly within the phase cons~aints (Fig. 3 ; the ~ajec tory  
0, 6", 6-, 0). Suppose that the motion sr~'tt off with u ---- ~ u o. The ~ajcc tory  passing 
through the origin Yx ffi Y~ ffi 0 (F ffi 0, ~ ~= 0) has, according to (3 .1 ) , t he  form 

+ ~ - . :  ~ ÷ ~  = uoexp ~ (5.1) F 

while the one passing through the point F ffi 0, 5 ffi ~* has the form 

a, ~ u0 =ffi ~ - -  a~a uo exp - -  (~- -~*)  (5.2) 

With the aid o f ( 5 . 1 ) , ( 5 . 2 )  we compute  J ---- J (0, 5") ~ ] (5÷, ~-) ~ J (~-, 0), replac-  
ing F (t) by F (~), 

I f ai ! 
J ( ' ' ' )  = uo - W [(~+)~ - (~- ) ' l  t t5.3) i 

To evaluate the sign of  this quantity we substract (5 .2)  from (5. 1), so as to obtain b ÷, 
5 - ,  namely ,  the points of  intersection of  these trajectories. After some manipulat iom 

we obtain exp ~--  fi~'~, t ~ ] / i  -i-, 5' (8*) (5.4) 

[o,., ] 
S ( ~ * ) =  a a ~ + a l  u0 t e x P \ u o  / 

Note that when 5" < 0 the ctawes do not intexsect and that 5 • > 0 and 5- < O. 
For the roots to exist it is necessary that t - -  S (~*) ~ l ,  --1 ~ S (6") ~ 0. Let 

us study the function S (5"). The derivative dS / d~* of this function l ~ S e l ~ s  sign 
on the segment 0 ~ 5" ~ ( a ~ a x )  uo (axa~) -~ ~ aeuol. From Fig. 3 it follows that the 
max imum value 5"~ = (aa~ + ax) uo (axa:) -~. Hence, since on 0 -.< 5* ~ 5* the func-  
tion S (0") varies monotonical ly  from 5 (O) = --1 to S (0~*) = O, Eq.(5.4)  has a real 
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root and 
u. In [-- S (6")] > 0 8+ - -  1 8 -  I = 8" - -  8 -  = a-7" 

Thin, for u ° (0) ---- + u 0 we get that the plant with the optimal control found above rea- 
ches the terminal point Ok > 0. Hence, by virtue of symmetry, we obtain ,,o (0) ~k > 0. 

N o t e 3. In the case under consideration we obtain [ F (8 ÷) ] - -  J F (8-) [ > 0. This 
corresponds to the fact that if the first switching (8*) was within the phase constraints, 
then the second switching (5-) also will be within. 

To prove the above-mentioned rule for choming the initial control in the case when 
the optimal trajectory goes onto the phase constraints, we can either carry out analogous 
eval~atiom of the integral or be satisfied by the following arguments. Suppose that the 
motion starts off with u ° (0) -~ + u o. Upon reaching the phase constraint F ---- -+- F~ 
the system moves under this constraint with a monotonk: growth of the co<Edinate 6 (t) 
up to 6 (oo) -~ --  at F0 a~ x (see (3 .4 ) ) .  If - -  atFoa-~ t ~ 60, the trajectory can be situ- 
ated on the constraint F == + F0 for an arbitrarily long time, increasing in doing ,o the 
v a l u ~  o f  t 

.~" b,F (t) dt 
0 

After coming off this constraint and moving on the terminal segment, even in the case 
of going onto the comtratnt F == - -  Fo ,  by virtue of the conditions 

[ 8x-  I <  1 8t  + I, 1 8 .,+ - -  81 + I > 181-  - -  8 , -  [ 

la2Fol t8~-I< a'-~- 

we find that the system remains with F (t) ~ 0 for a limited time. If, however. 
--~F0a~ x > 60, the system locates on the phase c o n t a i n s  F ---- + Fo for a limited 
time and then c t m  over the comtraint 8 (t) ~ 80. The coordinate F (t) moving along 
this constraint decrease, monotonically and tends to the value F (oo) ---- --  axSoa~ t > O. 
Thus, in this ease too, the system can sustain the condition F (t) > 0 for an arbitrarily 
long time. 

Thus, among the phase trajectories which have the structure established above for 
optimal trajectories, only the trajectories with u (t) Ok It-.0 ~> 0 ensure any value of 

t k 

S b2F (t) dt 
0 

of the sign required. 
N o t e  4 .  In this paper we have not written out the explicit dependence of the opti- 

mal control u ~ (...) on the plant's current phase coordinates. We doubt the advisability 
of detenuining this dependence in view of its unwieldinom. The expressions derived for 
the determination of the characteristic instants (ts, t 5 ,  etc. ) in terms of the cm'rent 
phase coordinates and the expressions for the determination of the optimal control at 
the intermediate instants yield full information for the practical realization of the desi- 
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